Friday, 25 August 2017

Média Em Movimento De Fase Zero


Menino, PeterK. Não consigo imaginar uma verdadeira fase linear e um filtro causal verdadeiramente IIR. Não consigo ver como você obteria simetria sem que a coisa seja FIR. E, semanticamente, eu chamaria um Truncated IIR (TIIR) um método de implementação de uma classe de FIR. E então você não obtém uma fase linear, a menos que você seja capaz de fazer uma filtração com ela, em bloco, sorta como Powell-Chau. Ndash robert bristow-johnson 26 de novembro 15 às 3:32 Esta resposta explica como funciona o filtfilt. Ndash Matt L. 26 de novembro 15 às 7:48 Um filtro de média móvel de fase zero é um filtro FIR de comprimento estranho com coeficientes onde N é o comprimento do filtro (estranho). Uma vez que hn tem valores não-zero para nlt0, não é causal e, conseqüentemente, ele só pode ser implementado adicionando um atraso, ou seja, tornando-o causal. Observe que você não pode simplesmente usar a função Filtfilt de Matlabs com esse filtro porque, mesmo que você obtenha uma fase zero (com um atraso), a magnitude da função de transferência de filtros fica ao quadrado, correspondendo a uma resposta de impulso triangular (ou seja, amostras de entrada mais distantes do Amostra atual recebe menos peso). Esta resposta explica com mais detalhes o que o filtfilt faz. Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 19: Filtros recursivos Existem três tipos de resposta de fase que um filtro pode ter: fase zero. Fase linear. E fase não linear. Um exemplo de cada um destes é mostrado na Figura 19-7. Conforme mostrado em (a), o filtro de fase zero é caracterizado por uma resposta de impulso que é simétrica em torno da amostra zero. A forma real não importa, apenas que as amostras numeradas negativas são uma imagem espelhada das amostras numeradas positivas. Quando a transformada de Fourier é tomada dessa forma de onda simétrica, a fase será inteiramente zero, como mostrado em (b). A desvantagem do filtro de fase zero é que requer o uso de índices negativos, o que pode ser inconveniente para trabalhar. O filtro de fase linear é uma maneira de contornar isso. A resposta de impulso em (d) é idêntica à mostrada em (a), exceto que foi transferida para usar apenas amostras numeradas positivas. A resposta ao impulso ainda é simétrica entre a esquerda e a direita no entanto, a localização da simetria foi deslocada de zero. Esta mudança resulta na fase, (e), sendo uma linha reta. Contabilizando o nome: fase linear. A inclinação desta linha reta é diretamente proporcional à quantidade da mudança. Uma vez que a mudança na resposta ao impulso nada mais que produzir uma mudança idêntica no sinal de saída, o filtro de fase linear é equivalente ao filtro de fase zero para a maioria dos propósitos. A figura (g) mostra uma resposta de impulso que não é simétrica entre a esquerda e a direita. Correspondentemente, a fase, (h), não é uma linha reta. Em outras palavras, ele tem uma fase não-linear. Não confunda os termos: fase não linear e linear com o conceito de linearidade do sistema discutido no Capítulo 5. Embora ambos usem a palavra linear. Eles não estão relacionados. Por que alguém se importa se a fase for linear ou não Figuras (c), (f), e (i) mostre a resposta. Estas são as respostas de pulso de cada um dos três filtros. A resposta ao pulso não passa de uma resposta passo a passo positiva seguida de uma resposta passo a passo negativa. A resposta de pulso é usada aqui porque exibe o que acontece tanto nas bordas ascendentes como descendentes em um sinal. Aqui está a parte importante: os filtros de fase zero e linear têm bordas esquerda e direita que se parecem iguais. Enquanto filtros de fase não-linear têm bordas esquerda e direita que se parecem diferentes. Muitas aplicações não podem tolerar as bordas esquerda e direita, aparecendo diferentes. Um exemplo é a exibição de um osciloscópio, onde essa diferença pode ser mal interpretada como uma característica do sinal que está sendo medido. Outro exemplo é o processamento de vídeo. Você pode imaginar ligar a sua TV para encontrar a orelha esquerda do seu ator favorito diferente da orelha direita. É fácil fazer um filtro FIR (filtro de resposta finito) com uma fase linear. Isso ocorre porque a resposta de impulso (kernel de filtro) é especificada diretamente no processo de design. Fazer o kernel do filtro ter simetria esquerda-direita é tudo o que é necessário. Este não é o caso dos filtros IIR (recursivos), uma vez que os coeficientes de recursão são o que é especificado, e não a resposta ao impulso. A resposta de impulso de um filtro recursivo não é simétrica entre a esquerda e a direita e, portanto, tem uma fase não-linear. Circuitos eletrônicos analógicos têm esse mesmo problema com a resposta de fase. Imagine um circuito composto por resistores e capacitores que estão sentados em sua mesa. Se a entrada sempre foi zero, a saída também sempre foi zero. Quando um impulso é aplicado à entrada, os capacitores carregam rapidamente para algum valor e começam a diminuir exponencialmente através dos resistores. A resposta ao impulso (isto é, o sinal de saída) é uma combinação destes vários exponenciais exponentes de decomposição. A resposta ao impulso não pode ser simétrica, porque a saída foi zero antes do impulso, e a decomposição exponencial nunca atingiu novamente o valor zero. Os criadores de filtros analógicos atacam esse problema com o filtro Bessel. Apresentado no Capítulo 3. O filtro Bessel foi concebido para ter a fase linear possível, no entanto, está muito abaixo do desempenho dos filtros digitais. A capacidade de fornecer uma fase linear exata é uma clara vantagem dos filtros digitais. Felizmente, existe uma maneira simples de modificar filtros recursivos para obter uma fase zero. A Figura 19-8 mostra um exemplo de como isso funciona. O sinal de entrada a ser filtrado é mostrado em (a). A figura (b) mostra o sinal depois de ter sido filtrada por um filtro passa-baixa de um único pólo. Uma vez que este é um filtro de fase não linear, as bordas esquerda e direita não parecem iguais são versões invertidas entre si. Conforme descrito anteriormente, este filtro recursivo é implementado começando na amostra 0 e trabalhando em direção à amostra 150, calculando cada amostra ao longo do caminho. Agora, suponha que ao invés de se mover da amostra 0 para a amostra 150, começamos na amostra 150 e avançamos em direção à amostra 0. Em outras palavras, cada amostra no sinal de saída é calculada a partir de amostras de entrada e saída à direita da amostra trabalhada em. Isso significa que a equação de recursão, Eq. 19-1, é alterado para: Figura (c) mostra o resultado dessa filtragem inversa. Isso é análogo ao passar um sinal analógico através de um circuito RC eletrônico enquanto o tempo de execução está para trás. Esrevinu eht pu-wercs nac lasrever emite - noituaC O filtro na direção inversa não produz nenhum benefício em si mesmo, o sinal filtrado ainda possui bordas esquerda e direita que não se parecem. A magia acontece quando a filtragem direta e reversa são combinadas. A Figura (d) resulta da filtragem do sinal na direção direta e, em seguida, filtra-se novamente na direção inversa. Voila Isso produz um filtro recursivo de fase zero. Na verdade, qualquer filtro recursivo pode ser convertido em fase zero com esta técnica de filtragem bidirecional. A única penalidade para este desempenho melhorado é um fator de dois em tempo de execução e complexidade do programa. Como você encontra as respostas de impulso e freqüência do filtro geral A magnitude da resposta de freqüência é a mesma para cada direção, enquanto as fases são opostas no sinal. Quando as duas direções são combinadas, a magnitude fica quadrada. Enquanto a fase cancela para zero. No domínio do tempo, isso corresponde a convolver a resposta de impulso original com uma versão invertida para a esquerda para a direita. Por exemplo, a resposta de impulso de um filtro passa-baixa de um único pólo é um exponencial unilateral. A resposta ao impulso do filtro bidirecional correspondente é uma exponencial unilateral que se decompõe para a direita, convolvida com uma exponencial unilateral que decaia para a esquerda. Passando pela matemática, isso resulta ser um exponencial de dupla face que decaia tanto para a esquerda quanto para a direita, com a mesma constante de decaimento que o filtro original. Algumas aplicações possuem apenas uma parte do sinal no computador em um momento específico, como sistemas que alternadamente insere e exibem dados de forma contínua. A filtragem bidirecional pode ser usada nesses casos, combinando-o com o método de sobreposição adicionado descrito no último capítulo. Quando você vem à questão de quanto tempo a resposta de impulso é, não diga infinito. Se você fizer isso, você precisará preencher cada segmento de sinal com um número infinito de zeros. Lembre-se, a resposta ao impulso pode ser truncada quando decaído abaixo do nível de ruído de arredondamento, isto é, cerca de 15 a 20 constantes de tempo. Cada segmento precisará ser preenchido com zeros na esquerda e direita para permitir a expansão durante a filtragem bidirecional.

No comments:

Post a Comment